Newer
Older
//! This module incapsulates most of the application-specific logics.
//!
//! It's responsible for
//! - handling proposals,
//! - handling configuration changes,
//! - processing raft `Ready` - persisting entries, communicating with other raft nodes.
use ::raft::prelude as raft;
use ::raft::Error as RaftError;
use ::raft::StateRole as RaftStateRole;
use ::raft::StorageError;
use ::tarantool::fiber::{Cond, Mutex};
use ::tarantool::transaction::start_transaction;
use std::cell::{Cell, RefCell};
use crate::stringify_cfunc;
use crate::traft::Peer;
use crate::traft::RaftIndex;
use crate::traft::RaftTerm;
use ::tarantool::util::IntoClones as _;
use protobuf::Message as _;
use crate::cache::CachedCell;
use crate::traft::error::Error;
use crate::traft::event;
use crate::traft::event::Event;
use crate::traft::failover;
use crate::traft::notify::Notify;
use crate::traft::Op;
use crate::traft::TopologyRequest;
use crate::traft::{
ExpelRequest, ExpelResponse, JoinRequest, JoinResponse, SyncRaftRequest, UpdatePeerRequest,
};
use crate::traft::{RaftSpaceAccess, Storage};
type RawNode = raft::RawNode<RaftSpaceAccess>;
#[derive(Clone, Debug, tlua::Push, tlua::PushInto)]
pub struct Status {
/// `raft_id` of the current instance
/// `raft_id` of the leader instance
pub leader_id: Option<RaftId>,
/// One of "Follower", "Candidate", "Leader", "PreCandidate"
/// Whether instance has finished its `postjoin`
/// initialization stage
/// The heart of `traft` module - the Node.
inner_node: Rc<Mutex<InnerNode>>,
pub(super) storage: RaftSpaceAccess,
_conf_change_loop: fiber::UnitJoinHandle<'static>,
raft_loop_cond: Rc<Cond>,
impl std::fmt::Debug for Node {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("Node")
.field("raft_id", &self.raft_id())
.finish_non_exhaustive()
}
pub const TICK: Duration = Duration::from_millis(100);
/// Initialize the raft node.
/// **This function yields**
pub fn new(storage: RaftSpaceAccess) -> Result<Self, RaftError> {
let inner_node = InnerNode::new(storage.clone())?;
id: inner_node.raft_id(),
let inner_node = Rc::new(Mutex::new(inner_node));
let raft_loop_cond = Rc::new(Cond::new());
let main_loop_fn = {
let status = status.clone();
let inner_node = inner_node.clone();
let storage = storage.clone();
let raft_loop_cond = raft_loop_cond.clone();
move || raft_main_loop(status, inner_node, storage, raft_loop_cond)
let conf_change_loop_fn = {
let status = status.clone();
let storage = storage.clone();
move || raft_conf_change_loop(status, storage)
raft_loop_cond,
_main_loop: fiber::Builder::new()
.name("raft_main_loop")
.proc(main_loop_fn)
.start()
.unwrap(),
_conf_change_loop: fiber::Builder::new()
.name("raft_conf_change_loop")
.proc(conf_change_loop_fn)
storage,
};
// Wait for the node to enter the main loop
node.tick_and_yield(0);
pub fn raft_id(&self) -> RaftId {
self.status.borrow().id
}
pub fn status(&self) -> Status {
self.status.borrow().clone()
}
pub fn mark_as_ready(&self) {
self.status.borrow_mut().is_ready = true;
event::broadcast(Event::StatusChanged);
/// Wait for the status to be changed.
/// **This function yields**
event::wait(Event::StatusChanged).expect("Events system wasn't initialized");
/// **This function yields**
pub fn wait_for_read_state(&self, timeout: Duration) -> Result<RaftIndex, Error> {
let notify = self.raw_operation(|inner_node| inner_node.read_state_async())?;
notify.recv_timeout::<RaftIndex>(timeout)
/// Propose an operation and wait for it's result.
/// **This function yields**
pub fn propose_and_wait<T: OpResult + Into<traft::Op>>(
&self,
op: T,
timeout: Duration,
) -> Result<T::Result, Error> {
let notify = self.raw_operation(|inner_node| inner_node.propose_async(op))?;
notify.recv_timeout::<T::Result>(timeout)
/// Become a candidate and wait for a main loop round so that there's a
/// chance we become the leader.
/// **This function yields**
pub fn campaign_and_yield(&self) -> Result<(), Error> {
self.raw_operation(|inner_node| inner_node.campaign())?;
// Even though we don't expect a response, we still should let the
// main_loop do an iteration. Without rescheduling, the Ready state
// wouldn't be processed, the Status wouldn't be updated, and some
// assertions may fail (e.g. in `postjoin()` in `main.rs`).
fiber::reschedule();
Ok(())
/// **This function yields**
pub fn step_and_yield(&self, msg: raft::Message) {
self.raw_operation(|inner_node| inner_node.step(msg))
.map_err(|e| tlog!(Error, "{e}"))
.ok();
// even though we don't expect a response, we still should let the
// main_loop do an iteration
fiber::reschedule();
/// **This function yields**
pub fn tick_and_yield(&self, n_times: u32) {
self.raw_operation(|inner_node| inner_node.tick(n_times));
// even though we don't expect a response, we still should let the
// main_loop do an iteration
fiber::reschedule();
/// **This function yields**
let raft_id = self.raft_id();
self.step_and_yield(raft::Message {
to: raft_id,
from: raft_id,
msg_type: raft::MessageType::MsgTimeoutNow,
..Default::default()
})
/// Process the topology request and propose [`PersistPeer`] entry if
/// appropriate.
///
/// Returns an error if the callee node isn't a Raft leader.
///
/// **This function yields**
pub fn handle_topology_request_and_wait(
&self,
req: TopologyRequest,
) -> Result<traft::Peer, Error> {
let notify =
self.raw_operation(|inner_node| inner_node.process_topology_request_async(req))?;
notify.recv::<Peer>()
/// Only the conf_change_loop on a leader is eligible to call this function.
///
/// **This function yields**
fn propose_conf_change_and_wait(
&self,
term: RaftTerm,
conf_change: raft::ConfChangeV2,
) -> Result<(), Error> {
let notify = self
.raw_operation(|inner_node| inner_node.propose_conf_change_async(term, conf_change))?;
notify.recv()
/// This function **may yield** if `self.raw_node` is acquired.
#[inline]
fn raw_operation<R>(&self, f: impl FnOnce(&mut InnerNode) -> R) -> R {
let mut inner_node = self.inner_node.lock();
let res = f(&mut *inner_node);
self.raft_loop_cond.broadcast();
res
#[inline]
pub fn all_traft_entries(&self) -> ::tarantool::Result<Vec<traft::Entry>> {
self.storage.all_traft_entries()
}
struct InnerNode {
pub raw_node: RawNode,
pub notifications: HashMap<LogicalClock, Notify>,
topology_cache: CachedCell<RaftTerm, Topology>,
lc: LogicalClock,
}
impl InnerNode {
fn new(
mut storage: RaftSpaceAccess,
// TODO: provide clusterwide space access
) -> Result<Self, RaftError> {
let box_err = |e| StorageError::Other(Box::new(e));
let raft_id: RaftId = storage.raft_id().map_err(box_err)?.unwrap();
let applied: RaftIndex = storage.applied().map_err(box_err)?.unwrap_or(0);
let cfg = raft::Config {
id: raft_id,
applied,
pre_vote: true,
..Default::default()
};
let raw_node = RawNode::new(&cfg, storage.clone(), &tlog::root())?;
Ok(Self {
raw_node,
notifications: Default::default(),
topology_cache: CachedCell::new(),
lc: {
let gen = storage.gen().unwrap().unwrap_or(0) + 1;
storage.persist_gen(gen).unwrap();
LogicalClock::new(cfg.id, gen)
},
})
}
fn raft_id(&self) -> RaftId {
self.raw_node.raft.id
}
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
pub fn read_state_async(&mut self) -> Result<Notify, RaftError> {
// In some states `raft-rs` ignores the ReadIndex request.
// Check it preliminary, don't wait for the timeout.
//
// See for details:
// - <https://github.com/tikv/raft-rs/blob/v0.6.0/src/raft.rs#L2058>
// - <https://github.com/tikv/raft-rs/blob/v0.6.0/src/raft.rs#L2323>
let leader_doesnt_exist = self.raw_node.raft.leader_id == INVALID_ID;
let term_just_started = // ...
self.raw_node.raft.state == RaftStateRole::Leader
&& !self.raw_node.raft.commit_to_current_term();
if leader_doesnt_exist || term_just_started {
return Err(RaftError::ProposalDropped);
}
let (lc, notify) = self.schedule_notification();
// read_index puts this context into an Entry,
// so we've got to compose full EntryContext,
// despite single LogicalClock would be enough
let ctx = traft::EntryContextNormal::new(lc, Op::Nop);
self.raw_node.read_index(ctx.to_bytes());
Ok(notify)
}
pub fn propose_async<T>(&mut self, op: T) -> Result<Notify, RaftError>
where
T: Into<traft::Op>,
{
let (lc, notify) = self.schedule_notification();
let ctx = traft::EntryContextNormal::new(lc, op);
self.raw_node.propose(ctx.to_bytes(), vec![])?;
Ok(notify)
}
pub fn campaign(&mut self) -> Result<(), RaftError> {
self.raw_node.campaign()
}
pub fn step(&mut self, msg: raft::Message) -> Result<(), RaftError> {
if msg.to != self.raft_id() {
return Ok(());
}
// TODO check it's not a MsgPropose with op::PersistPeer.
// TODO check it's not a MsgPropose with ConfChange.
self.raw_node.step(msg)
}
pub fn tick(&mut self, n_times: u32) {
for _ in 0..n_times {
self.raw_node.tick();
}
}
/// Process the topology request and propose [`PersistPeer`] entry if
/// appropriate.
///
/// Returns an error if the callee node isn't a Raft leader.
///
/// **This function yields**
pub fn process_topology_request_async(
&mut self,
req: TopologyRequest,
) -> Result<Notify, RaftError> {
if self.raw_node.raft.state != RaftStateRole::Leader {
return Err(RaftError::ConfChangeError("not a leader".into()));
}
let mut topology = self
.topology_cache
.pop(&self.raw_node.raft.term)
.unwrap_or_else(|| {
let peers = Storage::peers().unwrap();
let replication_factor = Storage::replication_factor().unwrap().unwrap();
Topology::from_peers(peers).with_replication_factor(replication_factor)
});
let peer_result = match req {
TopologyRequest::Join(JoinRequest {
instance_id,
replicaset_id,
advertise_address,
failure_domain,
..
}) => topology.join(
instance_id,
replicaset_id,
advertise_address,
failure_domain,
),
TopologyRequest::UpdatePeer(req) => topology.update_peer(req),
};
let mut peer = crate::unwrap_ok_or!(peer_result, Err(e) => {
self.topology_cache.put(self.raw_node.raft.term, topology);
return Err(RaftError::ConfChangeError(e));
});
peer.commit_index = self.raw_node.raft.raft_log.last_index() + 1;
let (lc, notify) = self.schedule_notification();
let ctx = traft::EntryContextNormal::new(lc, Op::PersistPeer { peer });
self.raw_node.propose(ctx.to_bytes(), vec![])?;
self.topology_cache.put(self.raw_node.raft.term, topology);
Ok(notify)
}
fn propose_conf_change_async(
&mut self,
term: RaftTerm,
conf_change: raft::ConfChangeV2,
) -> Result<Notify, RaftError> {
// In some states proposing a ConfChange is impossible.
// Check if there's a reason to reject it.
#[allow(clippy::never_loop)]
let reason: Option<&str> = loop {
// Checking leadership is only needed for the
// correct latch management. It doesn't affect
// raft correctness. Checking the instance is a
// leader makes sure the proposed `ConfChange`
// is appended to the raft log immediately
// instead of sending `MsgPropose` over the
// network.
if self.raw_node.raft.state != RaftStateRole::Leader {
break Some("not a leader");
}
if term != self.raw_node.raft.term {
break Some("raft term mismatch");
}
// Without this check the node would silently ignore the conf change.
// See https://github.com/tikv/raft-rs/blob/v0.6.0/src/raft.rs#L2014-L2026
if self.raw_node.raft.has_pending_conf() {
break Some("already has pending confchange");
}
break None;
};
if let Some(e) = reason {
return Err(RaftError::ConfChangeError(e.into()));
}
let prev_index = self.raw_node.raft.raft_log.last_index();
self.raw_node.propose_conf_change(vec![], conf_change)?;
let last_index = self.raw_node.raft.raft_log.last_index();
// oops, current instance isn't actually a leader
// (which is impossible in theory, but we're not
// sure in practice) and sent the ConfChange message
// to the raft network instead of appending it to the
// raft log.
assert_eq!(last_index, prev_index + 1);
let (rx, tx) = Notify::new().into_clones();
with_joint_state_latch(|joint_state_latch| {
assert!(joint_state_latch.take().is_none());
event::broadcast(Event::JointStateEnter);
joint_state_latch.set(Some(JointStateLatch {
index: last_index,
notify: tx,
}));
});
Ok(rx)
}
#[inline]
fn cleanup_notifications(&mut self) {
self.notifications
.retain(|_, notify: &mut Notify| !notify.is_closed());
}
/// Generates a pair of logical clock and a notification channel.
/// Logical clock is a unique identifier suitable for tagging
/// entries in raft log. Notification is broadcasted when the
/// corresponding entry is committed.
#[inline]
fn schedule_notification(&mut self) -> (LogicalClock, Notify) {
let (rx, tx) = Notify::new().into_clones();
let lc = {
self.lc.inc();
self.lc
};
self.notifications.insert(lc, tx);
(lc, rx)
}
struct JointStateLatch {
/// Index of the latest ConfChange entry proposed.
/// Helps detecting when the entry is overridden
/// due to a re-election.
index: RaftIndex,
/// Make a notification when the latch is unlocked.
/// Notification is a `Result<Box<()>>`.
notify: Notify,
}
fn with_joint_state_latch<F, R>(f: F) -> R
where
F: FnOnce(&Cell<Option<JointStateLatch>>) -> R,
{
thread_local! {
static JOINT_STATE_LATCH: Cell<Option<JointStateLatch>> = Cell::new(None);
}
JOINT_STATE_LATCH.with(f)
}
/// Is called during a transaction
fn handle_committed_entries(
entries: Vec<raft::Entry>,
inner_node: &mut InnerNode,
storage: &mut RaftSpaceAccess,
pool: &mut ConnectionPool,
topology_changed: &mut bool,
) {
for entry in &entries {
let entry = match traft::Entry::try_from(entry) {
Ok(v) => v,
Err(e) => {
tlog!(
Error,
"error parsing (and applying) an entry: {e}, entry = {entry:?}"
);
continue;
}
};
raft::EntryType::EntryNormal => {
handle_committed_normal_entry(entry, pool, topology_changed, expelled, inner_node)
}
raft::EntryType::EntryConfChange | raft::EntryType::EntryConfChangeV2 => {
handle_committed_conf_change(entry, inner_node, storage)
}
}
if let Some(last_entry) = entries.last() {
if let Err(e) = storage.persist_applied(last_entry.index) {
tlog!(
Error,
"error persisting applied index: {e}";
"index" => last_entry.index
);
} else {
event::broadcast(Event::RaftEntryApplied);
}
/// Is called during a transaction
fn handle_committed_normal_entry(
entry: traft::Entry,
topology_changed: &mut bool,
inner_node: &mut InnerNode,
assert_eq!(entry.entry_type, raft::EntryType::EntryNormal);
let result = entry.op().unwrap_or(&traft::Op::Nop).on_commit();
if let Some(lc) = entry.lc() {
if let Some(notify) = inner_node.notifications.remove(lc) {
notify.notify_ok_any(result);
}
}
if let Some(traft::Op::PersistPeer { peer }) = entry.op() {
pool.connect(peer.raft_id, peer.peer_address.clone());
*topology_changed = true;
if peer.grade == Grade::Expelled && peer.raft_id == inner_node.raw_node.raft.id {
// cannot exit during a transaction
*expelled = true;
with_joint_state_latch(|joint_state_latch| {
if let Some(latch) = joint_state_latch.take() {
if entry.index != latch.index {
joint_state_latch.set(Some(latch));
return;
}
// It was expected to be a ConfChange entry, but it's
// normal. Raft must have overriden it, or there was
// a re-election.
let e = RaftError::ConfChangeError("rolled back".into());
latch.notify.notify_err(e);
event::broadcast(Event::JointStateDrop);
/// Is called during a transaction
fn handle_committed_conf_change(
entry: traft::Entry,
inner_node: &mut InnerNode,
storage: &mut RaftSpaceAccess,
) {
let latch_unlock = || {
with_joint_state_latch(|joint_state_latch| {
if let Some(latch) = joint_state_latch.take() {
latch.notify.notify_ok(());
event::broadcast(Event::JointStateLeave);
};
// Beware: a tiny difference in type names (`V2` or not `V2`)
// makes a significant difference in `entry.data` binary layout and
// in joint state transitions.
// `ConfChangeTransition::Auto` implies that `ConfChangeV2` may be
// applied in an instant without entering the joint state.
let (is_joint, conf_state) = match entry.entry_type {
raft::EntryType::EntryConfChange => {
let mut cc = raft::ConfChange::default();
cc.merge_from_bytes(&entry.data).unwrap();
(false, inner_node.raw_node.apply_conf_change(&cc).unwrap())
raft::EntryType::EntryConfChangeV2 => {
let mut cc = raft::ConfChangeV2::default();
cc.merge_from_bytes(&entry.data).unwrap();
// Unlock the latch when either of conditions is met:
// - conf_change will leave the joint state;
// - or it will be applied without even entering one.
let leave_joint = cc.leave_joint() || cc.enter_joint().is_none();
if leave_joint {
// ConfChangeTransition::Auto implies that at this
// moment raft-rs will implicitly propose another empty
// conf change that represents leaving the joint state.
(
!leave_joint,
inner_node.raw_node.apply_conf_change(&cc).unwrap(),
)
}
_ => unreachable!(),
let raft_id = &inner_node.raw_node.raft.id;
let voters_old = storage.voters().unwrap().unwrap_or_default();
if voters_old.contains(raft_id) && !conf_state.voters.contains(raft_id) {
event::broadcast_when(Event::Demoted, Event::JointStateLeave).ok();
} else {
event::broadcast(Event::Demoted);
}
storage.persist_conf_state(&conf_state).unwrap();
/// Is called during a transaction
fn handle_read_states(
read_states: Vec<raft::ReadState>,
notifications: &mut HashMap<LogicalClock, Notify>,
) {
for rs in read_states {
let ctx = match traft::EntryContextNormal::read_from_bytes(&rs.request_ctx) {
Ok(Some(v)) => v,
Ok(None) => continue,
Err(_) => {
tlog!(Error, "abnormal entry, read_state = {rs:?}");
continue;
}
};
if let Some(notify) = notifications.remove(&ctx.lc) {
notify.notify_ok(rs.index);
}
}
}
/// Is called during a transaction
fn handle_messages(messages: Vec<raft::Message>, pool: &ConnectionPool) {
for msg in messages {
if let Err(e) = pool.send(&msg) {
tlog!(Error, "{e}");
}
}
}
inner_node: Rc<Mutex<InnerNode>>,
mut storage: RaftSpaceAccess,
raft_loop_cond: Rc<Cond>,
let mut next_tick = Instant::now() + Node::TICK;
let mut pool = ConnectionPool::builder()
.handler_name(stringify_cfunc!(raft_interact))
.call_timeout(Node::TICK * 4)
.connect_timeout(Node::TICK * 4)
.inactivity_timeout(Duration::from_secs(60))
for peer in Storage::peers().unwrap() {
pool.connect(peer.raft_id, peer.peer_address);
raft_loop_cond.wait_timeout(Node::TICK);
let mut inner_node = inner_node.lock();
inner_node.cleanup_notifications();
let now = Instant::now();
if now > next_tick {
next_tick = now + Node::TICK;
inner_node.raw_node.tick();
// Get the `Ready` with `RawNode::ready` interface.
if !inner_node.raw_node.has_ready() {
let mut ready: raft::Ready = inner_node.raw_node.ready();
let mut topology_changed = false;
let mut expelled = false;
start_transaction(|| -> Result<(), TransactionError> {
if !ready.messages().is_empty() {
// Send out the messages come from the node.
let messages = ready.take_messages();
if !ready.snapshot().is_empty() {
// This is a snapshot, we need to apply the snapshot at first.
unimplemented!();
// Storage::apply_snapshot(ready.snapshot()).unwrap();
}
let committed_entries = ready.take_committed_entries();
handle_committed_entries(
committed_entries,
&mut storage,
&mut topology_changed,
if !ready.entries().is_empty() {
let e = ready.entries();
// Append entries to the Raft log.
storage.persist_entries(e).unwrap();
if let Some(hs) = ready.hs() {
// Raft HardState changed, and we need to persist it.
// let hs = hs.clone();
storage.persist_hard_state(hs).unwrap();
if let Some(ss) = ready.ss() {
let mut status = status.borrow_mut();
status.leader_id = (ss.leader_id != INVALID_ID).then(|| ss.leader_id);
status.raft_state = format!("{:?}", ss.raft_state);
event::broadcast(Event::StatusChanged);
}
if !ready.persisted_messages().is_empty() {
// Send out the persisted messages come from the node.
let messages = ready.take_persisted_messages();
}
let read_states = ready.take_read_states();
handle_read_states(read_states, &mut inner_node.notifications);
if expelled {
crate::tarantool::exit(0);
}
let mut light_rd = inner_node.raw_node.advance(ready);
start_transaction(|| -> Result<(), TransactionError> {
if let Some(commit) = light_rd.commit_index() {
storage.persist_commit(commit).unwrap();
}
// Send out the messages.
let messages = light_rd.take_messages();
// Apply all committed entries.
let committed_entries = light_rd.take_committed_entries();
handle_committed_entries(
committed_entries,
&mut storage,
&mut topology_changed,
inner_node.raw_node.advance_apply();
if expelled {
crate::tarantool::exit(0);
}
event::broadcast(Event::TopologyChanged);
if let Some(peer) =
traft::Storage::peer_by_raft_id(inner_node.raw_node.raft.id).unwrap()
{
let mut box_cfg = crate::tarantool::cfg().unwrap();
assert_eq!(box_cfg.replication_connect_quorum, 0);
box_cfg.replication =
traft::Storage::box_replication(&peer.replicaset_id, None).unwrap();
crate::tarantool::set_cfg(&box_cfg);
}
}
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
fn raft_conf_change(storage: &RaftSpaceAccess, peers: &[Peer]) -> Option<raft::ConfChangeV2> {
let voter_ids: HashSet<RaftId> =
HashSet::from_iter(storage.voters().unwrap().unwrap_or_default());
let learner_ids: HashSet<RaftId> =
HashSet::from_iter(storage.learners().unwrap().unwrap_or_default());
let peer_is_active: HashMap<RaftId, bool> = peers
.iter()
.map(|peer| (peer.raft_id, peer.is_active()))
.collect();
let (active_voters, to_demote): (Vec<RaftId>, Vec<RaftId>) = voter_ids
.iter()
.partition(|id| peer_is_active.get(id).copied().unwrap_or(false));
let active_learners: Vec<RaftId> = learner_ids
.iter()
.copied()
.filter(|id| peer_is_active.get(id).copied().unwrap_or(false))
.collect();
let new_peers: Vec<RaftId> = peer_is_active
.iter()
.map(|(&id, _)| id)
.filter(|id| !voter_ids.contains(id) && !learner_ids.contains(id))
.collect();
let mut changes: Vec<raft::ConfChangeSingle> = Vec::new();
const VOTER: bool = true;
const LEARNER: bool = false;
changes.extend(
to_demote
.map(|id| conf_change_single(id, LEARNER)),
);
let total_active = active_voters.len() + active_learners.len() + new_peers.len();
if total_active == 0 {
return None;
}
let new_peers_to_promote;
match failover::voters_needed(active_voters.len(), total_active) {
0 => {
new_peers_to_promote = 0;
}
pos @ 1..=i64::MAX => {
let pos = pos as usize;
if pos < active_learners.len() {
for &raft_id in &active_learners[0..pos] {
changes.push(conf_change_single(raft_id, VOTER))
}
new_peers_to_promote = 0;
} else {
for &raft_id in &active_learners {
changes.push(conf_change_single(raft_id, VOTER))
new_peers_to_promote = pos - active_learners.len();
assert!(new_peers_to_promote <= new_peers.len());
for &raft_id in &new_peers[0..new_peers_to_promote] {
changes.push(conf_change_single(raft_id, VOTER))
neg @ i64::MIN..=-1 => {
let neg = -neg as usize;
assert!(neg < active_voters.len());
for &raft_id in &active_voters[0..neg] {
changes.push(conf_change_single(raft_id, LEARNER))
}
new_peers_to_promote = 0;
for &raft_id in &new_peers[new_peers_to_promote..] {
changes.push(conf_change_single(raft_id, LEARNER))
}
if changes.is_empty() {
return None;
}
let conf_change = raft::ConfChangeV2 {
transition: raft::ConfChangeTransition::Auto,
changes: changes.into(),
..Default::default()
};
Some(conf_change)
}
fn raft_conf_change_loop(status: Rc<RefCell<Status>>, storage: RaftSpaceAccess) {
loop {
if status.borrow().raft_state != "Leader" {
event::wait(Event::StatusChanged).expect("Events system must be initialized");
let peers = Storage::peers().unwrap();
let term = storage.term().unwrap().unwrap_or(0);
let node = global().expect("must be initialized");
if let Some(conf_change) = raft_conf_change(&storage, &peers) {
// main_loop gives the warranty that every ProposeConfChange
// will sometimes be handled and there's no need in timeout.
// It also guarantees that the notification will arrive only
// after the node leaves the joint state.
match node.propose_conf_change_and_wait(term, conf_change) {
Ok(()) => tlog!(Info, "conf_change processed"),
Err(e) => {
tlog!(Warning, "conf_change failed: {e}");
fiber::sleep(Duration::from_secs(1));
}
event::wait(Event::TopologyChanged).expect("Events system must be initialized");
fn conf_change_single(node_id: RaftId, is_voter: bool) -> raft::ConfChangeSingle {
let change_type = if is_voter {
raft::ConfChangeType::AddNode
} else {
raft::ConfChangeType::AddLearnerNode
};
raft::ConfChangeSingle {
change_type,
node_id,
..Default::default()
}
}
static mut RAFT_NODE: Option<Box<Node>> = None;
pub fn set_global(node: Node) {
unsafe {
assert!(
RAFT_NODE.is_none(),
"discovery::set_global() called twice, it's a leak"
);
RAFT_NODE = Some(Box::new(node));