Newer
Older
//! This module incapsulates most of the application-specific logics.
//!
//! It's responsible for
//! - handling proposals,
//! - handling configuration changes,
//! - processing raft `Ready` - persisting entries, communicating with other raft nodes.
use ::raft::prelude as raft;
use ::raft::Error as RaftError;
use ::raft::StateRole as RaftStateRole;
use ::raft::StorageError;
use ::tarantool::error::{TarantoolError, TransactionError};
use ::tarantool::fiber::r#async::timeout::IntoTimeout as _;
use ::tarantool::fiber::r#async::{oneshot, watch};
use ::tarantool::fiber::Mutex;
use ::tarantool::transaction::start_transaction;
use std::collections::{HashMap, HashSet};

Georgy Moshkin
committed
use crate::governor;
use crate::kvcell::KVCell;
use crate::loop_start;
use crate::r#loop::FlowControl;
use crate::storage::ToEntryIter as _;
use crate::storage::{Clusterwide, ClusterwideSpace, PropertyName};
use crate::stringify_cfunc;
use crate::traft::RaftIndex;
use crate::traft::RaftTerm;
use crate::traft::{OpDML, OpPersistInstance};
use crate::unwrap_some_or;
use crate::warn_or_panic;
use crate::traft::error::Error;
use crate::traft::event;
use crate::traft::event::Event;
use crate::traft::notify::{notification, Notifier, Notify};

Georgy Moshkin
committed
use crate::traft::rpc::{join, update_instance};
use crate::traft::Address;

Georgy Moshkin
committed
use crate::traft::CurrentGradeVariant;
use crate::traft::Op;

Georgy Moshkin
committed
use crate::traft::OpResult;
use crate::traft::RaftSpaceAccess;
type RawNode = raft::RawNode<RaftSpaceAccess>;
::tarantool::define_str_enum! {
pub enum RaftState {
Follower = "Follower",
Candidate = "Candidate",
Leader = "Leader",
PreCandidate = "PreCandidate",
}
}
impl RaftState {
pub fn is_leader(&self) -> bool {
matches!(self, Self::Leader)
}
}
impl From<RaftStateRole> for RaftState {
fn from(role: RaftStateRole) -> Self {
match role {
RaftStateRole::Follower => Self::Follower,
RaftStateRole::Candidate => Self::Candidate,
RaftStateRole::Leader => Self::Leader,
RaftStateRole::PreCandidate => Self::PreCandidate,
}
}
}
#[derive(Copy, Clone, Debug, tlua::Push, tlua::PushInto)]
/// `raft_id` of the current instance
/// `raft_id` of the leader instance
pub leader_id: Option<RaftId>,
/// Current term number
pub term: RaftTerm,
/// Current raft state
pub raft_state: RaftState,
pub fn check_term(&self, requested_term: RaftTerm) -> traft::Result<()> {
if requested_term != self.term {
return Err(Error::TermMismatch {
requested: requested_term,
current: self.term,
});
}
Ok(())
}
}
/// The heart of `traft` module - the Node.
/// RaftId of the Node.
//
// It appears twice in the Node: here and in `status.id`.
// This is a concious decision.
// `self.raft_id()` is used in Rust API, and
// `self.status()` is mostly useful in Lua API.

Georgy Moshkin
committed
pub(crate) raft_id: RaftId,
pub(crate) storage: Clusterwide,
pub(crate) raft_storage: RaftSpaceAccess,
pub(crate) governor_loop: governor::Loop,
status: watch::Receiver<Status>,
impl std::fmt::Debug for Node {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("Node")
.field("raft_id", &self.raft_id)
.finish_non_exhaustive()
}
/// Initialize the raft node.
/// **This function yields**
pub fn new(storage: Clusterwide, raft_storage: RaftSpaceAccess) -> Result<Self, RaftError> {
let node_impl = NodeImpl::new(storage.clone(), raft_storage.clone())?;
let raft_id = node_impl.raft_id();
let status = node_impl.status.subscribe();
let node_impl = Rc::new(Mutex::new(node_impl));
main_loop: MainLoop::start(node_impl.clone()), // yields
governor_loop: governor::Loop::start(

Georgy Moshkin
committed
status.clone(),
storage.clone(),
raft_storage.clone(),
),
storage,
raft_storage,
};
// Wait for the node to enter the main loop
node.tick_and_yield(0);
pub fn raft_id(&self) -> RaftId {
/// Wait for the status to be changed.
/// **This function yields**
fiber::block_on(self.status.clone().changed()).unwrap();
/// **This function yields**
pub fn wait_for_read_state(&self, timeout: Duration) -> traft::Result<RaftIndex> {
let notify = self.raw_operation(|node_impl| node_impl.read_state_async())?;
fiber::block_on(notify.recv_timeout::<RaftIndex>(timeout))
/// Propose an operation and wait for it's result.
/// **This function yields**
pub fn propose_and_wait<T: OpResult + Into<traft::Op>>(
&self,
op: T,
timeout: Duration,
) -> traft::Result<T::Result> {
let notify = self.raw_operation(|node_impl| node_impl.propose_async(op))?;
fiber::block_on(notify.recv_timeout::<T::Result>(timeout))
/// Become a candidate and wait for a main loop round so that there's a
/// chance we become the leader.
/// **This function yields**
pub fn campaign_and_yield(&self) -> traft::Result<()> {
self.raw_operation(|node_impl| node_impl.campaign())?;
// Even though we don't expect a response, we still should let the
// main_loop do an iteration. Without rescheduling, the Ready state
// wouldn't be processed, the Status wouldn't be updated, and some
// assertions may fail (e.g. in `postjoin()` in `main.rs`).
fiber::reschedule();
Ok(())
/// **This function yields**
pub fn step_and_yield(&self, msg: raft::Message) {
self.raw_operation(|node_impl| node_impl.step(msg))
.map_err(|e| tlog!(Error, "{e}"))
.ok();
// even though we don't expect a response, we still should let the
// main_loop do an iteration
fiber::reschedule();
/// **This function yields**
pub fn tick_and_yield(&self, n_times: u32) {
self.raw_operation(|node_impl| node_impl.tick(n_times));
// even though we don't expect a response, we still should let the
// main_loop do an iteration
fiber::reschedule();
/// **This function yields**
let raft_id = self.raft_id();
self.step_and_yield(raft::Message {
to: raft_id,
from: raft_id,
msg_type: raft::MessageType::MsgTimeoutNow,
..Default::default()
})
/// Processes the [`join::Request`] request and appends necessary
/// entries to the raft log (if successful).
/// Returns the resulting [`Instance`] when the entry is committed.
///
/// Returns an error if the callee node isn't a raft leader.
/// **This function yields**
pub fn handle_join_request_and_wait(
&self,
) -> traft::Result<(Box<Instance>, HashSet<Address>)> {
let (notify_addr, notify_instance, replication_addresses) =
self.raw_operation(|node_impl| node_impl.process_join_request_async(req))?;
fiber::block_on(async {
let (addr, instance) = futures::join!(notify_addr.recv_any(), notify_instance.recv());
addr?;
instance.map(|i| (Box::new(i), replication_addresses))
/// Processes the [`update_instance::Request`] request and appends
/// [`Op::PersistInstance`] entry to the raft log (if successful).
///
/// Returns `Ok(())` when the entry is committed.
///
/// Returns an error if the callee node isn't a raft leader.
///
/// **This function yields**
pub fn handle_update_instance_request_and_wait(
&self,
req: update_instance::Request,
) -> traft::Result<()> {
let notify =
self.raw_operation(|node_impl| node_impl.process_update_instance_request_async(req))?;
fiber::block_on(notify.recv_any())?;
Ok(())
}
/// Only the conf_change_loop on a leader is eligible to call this function.
///
/// **This function yields**

Georgy Moshkin
committed
pub(crate) fn propose_conf_change_and_wait(
&self,
term: RaftTerm,
conf_change: raft::ConfChangeV2,
) -> traft::Result<()> {
let notify =
self.raw_operation(|node_impl| node_impl.propose_conf_change_async(term, conf_change))?;
fiber::block_on(notify).unwrap()?;
Ok(())
/// Attempt to transfer leadership to a given node and yield.
///
/// **This function yields**
pub fn transfer_leadership_and_yield(&self, new_leader_id: RaftId) {
self.raw_operation(|node_impl| node_impl.raw_node.transfer_leader(new_leader_id));
fiber::reschedule();
}
/// This function **may yield** if `self.node_impl` mutex is acquired.
#[inline]
fn raw_operation<R>(&self, f: impl FnOnce(&mut NodeImpl) -> R) -> R {
let mut node_impl = self.node_impl.lock();
res
#[inline]
pub fn all_traft_entries(&self) -> ::tarantool::Result<Vec<traft::Entry>> {
self.raft_storage.all_traft_entries()
}
pub raw_node: RawNode,
pub notifications: HashMap<LogicalClock, Notifier>,
topology_cache: KVCell<RaftTerm, Topology>,
joint_state_latch: KVCell<RaftIndex, oneshot::Sender<Result<(), RaftError>>>,
storage: Clusterwide,
raft_storage: RaftSpaceAccess,
status: watch::Sender<Status>,
fn new(storage: Clusterwide, raft_storage: RaftSpaceAccess) -> Result<Self, RaftError> {
let box_err = |e| StorageError::Other(Box::new(e));
let raft_id: RaftId = raft_storage.raft_id().map_err(box_err)?.unwrap();
let applied: RaftIndex = raft_storage.applied().map_err(box_err)?.unwrap_or(0);
let gen = raft_storage.gen().unwrap().unwrap_or(0) + 1;
raft_storage.persist_gen(gen).unwrap();
LogicalClock::new(raft_id, gen)
};
let pool = ConnectionPool::builder(storage.clone())
.handler_name(stringify_cfunc!(proc_raft_interact))
.call_timeout(MainLoop::TICK * 4)
.connect_timeout(MainLoop::TICK * 4)
.inactivity_timeout(Duration::from_secs(60))
.build();
let cfg = raft::Config {
id: raft_id,
applied,
pre_vote: true,
..Default::default()
};
let raw_node = RawNode::new(&cfg, raft_storage.clone(), &tlog::root())?;
let (status, _) = watch::channel(Status {
id: raft_id,
leader_id: None,
term: traft::INIT_RAFT_TERM,
raft_state: RaftState::Follower,
});
Ok(Self {
raw_node,
notifications: Default::default(),
topology_cache: KVCell::new(),
joint_state_latch: KVCell::new(),
raft_storage,
})
}
fn raft_id(&self) -> RaftId {
self.raw_node.raft.id
}
/// Provides mutable access to the Topology struct which reflects
/// uncommitted state of the cluster. Ensures the node is a leader.
/// In case it's not — returns an error.
///
/// It's important to access topology through this function so that
/// new changes are consistent with uncommitted ones.
fn topology_mut(&mut self) -> Result<&mut Topology, Error> {
if self.raw_node.raft.state != RaftStateRole::Leader {
self.topology_cache.take(); // invalidate the cache
return Err(Error::NotALeader);
}
let current_term = self.raw_node.raft.term;
let topology: Topology = unwrap_some_or! {
self.topology_cache.take_or_drop(¤t_term),
{
let mut instances = vec![];
for instance @ Instance { raft_id, .. } in self.storage.instances.iter()? {
instances.push((instance, self.storage.peer_addresses.try_get(raft_id)?))
let replication_factor = self
.storage

Georgy Moshkin
committed
.properties
.get(PropertyName::ReplicationFactor)?
.ok_or_else(|| Error::other("missing replication_factor value in storage"))?;
Topology::new(instances).with_replication_factor(replication_factor)
}
};
Ok(self.topology_cache.insert(current_term, topology))
}
pub fn read_state_async(&mut self) -> Result<Notify, RaftError> {
// In some states `raft-rs` ignores the ReadIndex request.
// Check it preliminary, don't wait for the timeout.
//
// See for details:
// - <https://github.com/tikv/raft-rs/blob/v0.6.0/src/raft.rs#L2058>
// - <https://github.com/tikv/raft-rs/blob/v0.6.0/src/raft.rs#L2323>
let leader_doesnt_exist = self.raw_node.raft.leader_id == INVALID_ID;
let term_just_started = // ...
self.raw_node.raft.state == RaftStateRole::Leader
&& !self.raw_node.raft.commit_to_current_term();
if leader_doesnt_exist || term_just_started {
return Err(RaftError::ProposalDropped);
}
let (lc, notify) = self.schedule_notification();
// read_index puts this context into an Entry,
// so we've got to compose full EntryContext,
// despite single LogicalClock would be enough
let ctx = traft::EntryContextNormal::new(lc, Op::Nop);
self.raw_node.read_index(ctx.to_bytes());
Ok(notify)
}
/// **Doesn't yield**
#[inline]
pub fn propose_async<T>(&mut self, op: T) -> Result<Notify, RaftError>
where
T: Into<traft::Op>,
{
let (lc, notify) = self.schedule_notification();
let ctx = traft::EntryContextNormal::new(lc, op.into());
self.raw_node.propose(ctx.to_bytes(), vec![])?;
Ok(notify)
}
pub fn campaign(&mut self) -> Result<(), RaftError> {
self.raw_node.campaign()
}
pub fn step(&mut self, msg: raft::Message) -> Result<(), RaftError> {
if msg.to != self.raft_id() {
return Ok(());
}
// TODO check it's not a MsgPropose with op::PersistInstance.
// TODO check it's not a MsgPropose with ConfChange.
self.raw_node.step(msg)
}
pub fn tick(&mut self, n_times: u32) {
for _ in 0..n_times {
self.raw_node.tick();
}
}
/// Processes the [`join::Request`] request and appends necessary entries
/// to the raft log (if successful).
///
/// Returns an error if the callee node isn't a Raft leader.
///
/// **This function doesn't yield**
pub fn process_join_request_async(
) -> traft::Result<(Notify, Notify, HashSet<Address>)> {
let topology = self.topology_mut()?;
let (instance, address, replication_addresses) = topology
.join(
req.instance_id,
req.replicaset_id,
req.advertise_address,
req.failure_domain,
)
.map_err(RaftError::ConfChangeError)?;
let peer_address = traft::PeerAddress {
raft_id: instance.raft_id,
address,
let op_addr = OpDML::replace(ClusterwideSpace::Address, &peer_address).expect("can't fail");
let op_instance = OpPersistInstance::new(instance);
// Important! Calling `raw_node.propose()` may result in
// `ProposalDropped` error, but the topology has already been
// modified. The correct handling of this case should be the
// following.
//
// The `topology_cache` should be preserved. It won't be fully
// consistent anymore, but that's bearable. (TODO: examine how
// the particular requests are handled). At least it doesn't
// much differ from the case of overriding the entry due to a
// re-election.
//
// On the other hand, dropping topology_cache may be much more
// harmful. Loss of the uncommitted entries could result in
// assigning the same `raft_id` to a two different nodes.
Ok((
self.propose_async(op_addr)?,
self.propose_async(op_instance)?,
replication_addresses,
/// Processes the [`update_instance::Request`] request and appends [`Op::PersistInstance`]
/// entry to the raft log (if successful).
///
/// Returns an error if the callee node isn't a Raft leader.
///
/// **This function doesn't yield**
pub fn process_update_instance_request_async(
&mut self,
req: update_instance::Request,
) -> traft::Result<Notify> {
let topology = self.topology_mut()?;
let instance = topology
.update_instance(req)
.map_err(RaftError::ConfChangeError)?;
// Important! Calling `raw_node.propose()` may result in
// `ProposalDropped` error, but the topology has already been
// modified. The correct handling of this case should be the
// following.
//
// The `topology_cache` should be preserved. It won't be fully
// consistent anymore, but that's bearable. (TODO: examine how
// the particular requests are handled). At least it doesn't
// much differ from the case of overriding the entry due to a
// re-election.
//
// On the other hand, dropping topology_cache may be much more
// harmful. Loss of the uncommitted entries could result in
// assigning the same `raft_id` to a two different nodes.
//
Ok(self.propose_async(OpPersistInstance::new(instance))?)
}
fn propose_conf_change_async(
&mut self,
term: RaftTerm,
conf_change: raft::ConfChangeV2,
) -> Result<oneshot::Receiver<Result<(), RaftError>>, RaftError> {
// In some states proposing a ConfChange is impossible.
// Check if there's a reason to reject it.
// Checking leadership is only needed for the
// correct latch management. It doesn't affect
// raft correctness. Checking the instance is a
// leader makes sure the proposed `ConfChange`
// is appended to the raft log immediately
// instead of sending `MsgPropose` over the
// network.
if self.raw_node.raft.state != RaftStateRole::Leader {
return Err(RaftError::ConfChangeError("not a leader".into()));
}
if term != self.raw_node.raft.term {
return Err(RaftError::ConfChangeError("raft term mismatch".into()));
}
// Without this check the node would silently ignore the conf change.
// See https://github.com/tikv/raft-rs/blob/v0.6.0/src/raft.rs#L2014-L2026
if self.raw_node.raft.has_pending_conf() {
return Err(RaftError::ConfChangeError(
"already has pending confchange".into(),
));
}
let prev_index = self.raw_node.raft.raft_log.last_index();
self.raw_node.propose_conf_change(vec![], conf_change)?;
// Ensure the ConfChange was actually appended to the log.
// Otherwise it's a problem: current instance isn't actually a
// leader (which is impossible in theory, but we're not sure in
// practice) and sent the message to the raft network. It may
// lead to an inconsistency.
let last_index = self.raw_node.raft.raft_log.last_index();
assert_eq!(last_index, prev_index + 1);
if !self.joint_state_latch.is_empty() {
warn_or_panic!("joint state latch is locked");
}
let (tx, rx) = oneshot::channel();
self.joint_state_latch.insert(last_index, tx);
event::broadcast(Event::JointStateEnter);
Ok(rx)
}
/// Is called during a transaction
fn handle_committed_entries(
&mut self,
entries: &[raft::Entry],
wake_governor: &mut bool,
expelled: &mut bool,
) {
for entry in entries {
let entry = match traft::Entry::try_from(entry) {
Ok(v) => v,
Err(e) => {
tlog!(Error, "abnormal entry: {e}"; "entry" => ?entry);
continue;
}
};
match entry.entry_type {
raft::EntryType::EntryNormal => {
self.handle_committed_normal_entry(entry, wake_governor, expelled)
}
raft::EntryType::EntryConfChange | raft::EntryType::EntryConfChangeV2 => {
self.handle_committed_conf_change(entry)
}
}
}
if let Some(last_entry) = entries.last() {
if let Err(e) = self.raft_storage.persist_applied(last_entry.index) {
tlog!(
Error,
"error persisting applied index: {e}";
"index" => last_entry.index
);
} else {
event::broadcast(Event::RaftEntryApplied);
}
}
}
/// Is called during a transaction
fn handle_committed_normal_entry(
&mut self,
entry: traft::Entry,
wake_governor: &mut bool,
expelled: &mut bool,
) {
assert_eq!(entry.entry_type, raft::EntryType::EntryNormal);
let lc = entry.lc();
let index = entry.index;
let op = entry.into_op().unwrap_or(traft::Op::Nop);
match &op {
traft::Op::PersistInstance(OpPersistInstance(instance)) => {
*wake_governor = true;
if instance.current_grade == CurrentGradeVariant::Expelled
&& instance.raft_id == self.raft_id()
{
// cannot exit during a transaction
*expelled = true;
}
}
traft::Op::Dml(op)
if matches!(
op.space(),
ClusterwideSpace::Property | ClusterwideSpace::Replicaset
) =>

Georgy Moshkin
committed
{
*wake_governor = true;
// apply the operation
let result = op.on_commit(&self.storage.instances);
if let Some(lc) = &lc {
if let Some(notify) = self.notifications.remove(lc) {
notify.notify_ok_any(result);
}
}
if let Some(notify) = self.joint_state_latch.take_or_keep(&index) {
// It was expected to be a ConfChange entry, but it's
// normal. Raft must have overriden it, or there was
// a re-election.
let e = RaftError::ConfChangeError("rolled back".into());
let _ = notify.send(Err(e));
event::broadcast(Event::JointStateDrop);
}
}
/// Is called during a transaction
fn handle_committed_conf_change(&mut self, entry: traft::Entry) {
let mut latch_unlock = || {
if let Some(notify) = self.joint_state_latch.take() {
let _ = notify.send(Ok(()));
event::broadcast(Event::JointStateLeave);
}
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
};
// Beware: a tiny difference in type names (`V2` or not `V2`)
// makes a significant difference in `entry.data` binary layout and
// in joint state transitions.
// `ConfChangeTransition::Auto` implies that `ConfChangeV2` may be
// applied in an instant without entering the joint state.
let (is_joint, conf_state) = match entry.entry_type {
raft::EntryType::EntryConfChange => {
let mut cc = raft::ConfChange::default();
cc.merge_from_bytes(&entry.data).unwrap();
latch_unlock();
(false, self.raw_node.apply_conf_change(&cc).unwrap())
}
raft::EntryType::EntryConfChangeV2 => {
let mut cc = raft::ConfChangeV2::default();
cc.merge_from_bytes(&entry.data).unwrap();
// Unlock the latch when either of conditions is met:
// - conf_change will leave the joint state;
// - or it will be applied without even entering one.
let leave_joint = cc.leave_joint() || cc.enter_joint().is_none();
if leave_joint {
latch_unlock();
}
// ConfChangeTransition::Auto implies that at this
// moment raft-rs will implicitly propose another empty
// conf change that represents leaving the joint state.
(!leave_joint, self.raw_node.apply_conf_change(&cc).unwrap())
}
_ => unreachable!(),
};
let raft_id = &self.raft_id();
let voters_old = self.raft_storage.voters().unwrap().unwrap_or_default();
if voters_old.contains(raft_id) && !conf_state.voters.contains(raft_id) {
if is_joint {
event::broadcast_when(Event::Demoted, Event::JointStateLeave).ok();
} else {
event::broadcast(Event::Demoted);
}
}
self.raft_storage.persist_conf_state(&conf_state).unwrap();
}
/// Is called during a transaction
fn handle_read_states(&mut self, read_states: &[raft::ReadState]) {
for rs in read_states {
let ctx = match traft::EntryContextNormal::read_from_bytes(&rs.request_ctx) {
Ok(Some(v)) => v,
Ok(None) => continue,
Err(e) => {
tlog!(Error, "abnormal read_state: {e}"; "read_state" => ?rs);
continue;
}
};
if let Some(notify) = self.notifications.remove(&ctx.lc) {
notify.notify_ok(rs.index);
}
}
}
/// Is called during a transaction
fn handle_messages(&mut self, messages: Vec<raft::Message>) {
for msg in messages {
if let Err(e) = self.pool.send(msg) {
tlog!(Error, "{e}");
}
}
}
/// Processes a so-called "ready state" of the [`raft::RawNode`].
///
/// This includes:
/// - Sending messages to other instances (raft nodes);
/// - Applying committed entries;
/// - Persisting uncommitted entries;
/// - Persisting hard state (term, vote, commit);
/// - Notifying pending fibers;
///
/// See also:
///
/// - <https://github.com/tikv/raft-rs/blob/v0.6.0/src/raw_node.rs#L85>
/// - or better <https://github.com/etcd-io/etcd/blob/v3.5.5/raft/node.go#L49>
///
/// This function yields.
fn advance(&mut self, wake_governor: &mut bool, expelled: &mut bool) {
// Get the `Ready` with `RawNode::ready` interface.
if !self.raw_node.has_ready() {
return;
}
let mut ready: raft::Ready = self.raw_node.ready();
// Send out messages to the other nodes.
self.handle_messages(ready.take_messages());
// This is a snapshot, we need to apply the snapshot at first.
if !ready.snapshot().is_empty() {
unimplemented!();
}
if let Some(ss) = ready.ss() {
if let Err(e) = self.status.send_modify(|s| {
s.leader_id = (ss.leader_id != INVALID_ID).then_some(ss.leader_id);
s.raft_state = ss.raft_state.into();
}) {
tlog!(Warning, "failed updating node status: {e}";
"leader_id" => ss.leader_id,
"raft_state" => ?ss.raft_state,
)
}
self.handle_read_states(ready.read_states());
if let Err(e) = start_transaction(|| -> Result<(), TransactionError> {
// Apply committed entries.
self.handle_committed_entries(ready.committed_entries(), wake_governor, expelled);
// Persist uncommitted entries in the raft log.
self.raft_storage.persist_entries(ready.entries()).unwrap();
// Raft HardState changed, and we need to persist it.
if let Some(hs) = ready.hs() {
self.raft_storage.persist_hard_state(hs).unwrap();
if let Err(e) = self.status.send_modify(|s| s.term = hs.term) {
tlog!(Warning, "failed updating current term: {e}"; "term" => hs.term)
}
tlog!(Warning, "dropping raft ready: {ready:#?}");
panic!("transaction failed: {e}, {}", TarantoolError::last());
// This bunch of messages is special. It must be sent only
// AFTER the HardState, Entries and Snapshot are persisted
// to the stable storage.
self.handle_messages(ready.take_persisted_messages());
// Advance the Raft.
let mut light_rd = self.raw_node.advance(ready);
// Send out messages to the other nodes.
self.handle_messages(light_rd.take_messages());
if let Err(e) = start_transaction(|| -> Result<(), TransactionError> {
// Update commit index.
if let Some(commit) = light_rd.commit_index() {
self.raft_storage.persist_commit(commit).unwrap();
// Apply committed entries.
self.handle_committed_entries(light_rd.committed_entries(), wake_governor, expelled);
tlog!(Warning, "dropping raft light ready: {light_rd:#?}");
panic!("transaction failed: {e}, {}", TarantoolError::last());
// Advance the apply index.
self.raw_node.advance_apply();
#[inline]
fn cleanup_notifications(&mut self) {
self.notifications.retain(|_, notify| !notify.is_closed());
}
/// Generates a pair of logical clock and a notification channel.
/// Logical clock is a unique identifier suitable for tagging
/// entries in raft log. Notification is broadcasted when the
/// corresponding entry is committed.
#[inline]
fn schedule_notification(&mut self) -> (LogicalClock, Notify) {
let (tx, rx) = notification();
let lc = {
self.lc.inc();
self.lc
};
self.notifications.insert(lc, tx);
(lc, rx)
}
_loop: Option<fiber::UnitJoinHandle<'static>>,
loop_waker: watch::Sender<()>,
stop_flag: Rc<Cell<bool>>,
}
struct MainLoopArgs {
}
struct MainLoopState {
next_tick: Instant,
loop_waker: watch::Receiver<()>,
stop_flag: Rc<Cell<bool>>,
}
impl MainLoop {
pub const TICK: Duration = Duration::from_millis(100);
fn start(node_impl: Rc<Mutex<NodeImpl>>) -> Self {
let (loop_waker_tx, loop_waker_rx) = watch::channel(());
let stop_flag: Rc<Cell<bool>> = Default::default();
let args = MainLoopArgs { node_impl };
let initial_state = MainLoopState {
next_tick: Instant::now(),
loop_waker: loop_waker_rx,
stop_flag: stop_flag.clone(),
};
Self {
// implicit yield
_loop: loop_start!("raft_main_loop", Self::iter_fn, args, initial_state),
loop_waker: loop_waker_tx,
stop_flag,
}
}
pub fn wakeup(&self) {
let _ = self.loop_waker.send(());
async fn iter_fn(args: &MainLoopArgs, state: &mut MainLoopState) -> FlowControl {
let _ = state.loop_waker.changed().timeout(Self::TICK).await;
if state.stop_flag.take() {
return FlowControl::Break;
}
let mut node_impl = args.node_impl.lock(); // yields
if state.stop_flag.take() {
return FlowControl::Break;
}
node_impl.cleanup_notifications();
if now > state.next_tick {
state.next_tick = now + Self::TICK;
let mut wake_governor = false;
let mut expelled = false;
node_impl.advance(&mut wake_governor, &mut expelled); // yields
if state.stop_flag.take() {
return FlowControl::Break;
}
if expelled {
crate::tarantool::exit(0);
}
if wake_governor {
if let Err(e) = async { global()?.governor_loop.wakeup() }.await {
tlog!(Warning, "failed waking up governor: {e}");
}
FlowControl::Continue
}
}
impl Drop for MainLoop {
fn drop(&mut self) {
self.stop_flag.set(true);
let _ = self.loop_waker.send(());
static mut RAFT_NODE: Option<Box<Node>> = None;
pub fn set_global(node: Node) {
unsafe {
assert!(
RAFT_NODE.is_none(),
"discovery::set_global() called twice, it's a leak"
);
RAFT_NODE = Some(Box::new(node));