Newer
Older
//! This module incapsulates most of the application-specific logics.
//!
//! It's responsible for
//! - handling proposals,
//! - handling configuration changes,
//! - processing raft `Ready` - persisting entries, communicating with other raft nodes.

Georgy Moshkin
committed
use crate::governor;
use crate::kvcell::KVCell;
use crate::loop_start;
use crate::r#loop::FlowControl;
use crate::schema::{IndexDef, SpaceDef};
use crate::storage::ToEntryIter as _;
use crate::storage::{pico_schema_version, set_pico_schema_version};
use crate::storage::{Clusterwide, ClusterwideSpace, ClusterwideSpaceIndex, PropertyName};
use crate::stringify_cfunc;
use crate::tarantool::eval as lua_eval;
use crate::traft::error::Error;
use crate::traft::event;
use crate::traft::event::Event;
use crate::traft::notify::{notification, Notifier, Notify};
use crate::traft::op::{Ddl, Dml, Op, OpResult, PersistInstance};
use crate::traft::rpc::{join, lsn, update_instance};
use crate::traft::Address;
use crate::traft::RaftId;
use crate::traft::RaftIndex;
use crate::traft::RaftSpaceAccess;
use crate::util::instant_saturating_add;
use crate::util::AnyWithTypeName;
use crate::warn_or_panic;
use ::raft::prelude as raft;
use ::raft::Error as RaftError;
use ::raft::StateRole as RaftStateRole;
use ::raft::StorageError;
use ::raft::INVALID_ID;
use ::tarantool::error::{TarantoolError, TransactionError};
use ::tarantool::fiber;
use ::tarantool::fiber::mutex::MutexGuard;
use ::tarantool::fiber::r#async::timeout::IntoTimeout as _;
use ::tarantool::fiber::r#async::{oneshot, watch};
use ::tarantool::fiber::Mutex;
use ::tarantool::proc;
use ::tarantool::tlua;
use ::tarantool::transaction::start_transaction;
use protobuf::Message as _;
use std::cell::Cell;
use std::collections::{HashMap, HashSet};
use std::convert::TryFrom;
use std::rc::Rc;
use std::time::Duration;
use std::time::Instant;
type RawNode = raft::RawNode<RaftSpaceAccess>;
::tarantool::define_str_enum! {
pub enum RaftState {
Follower = "Follower",
Candidate = "Candidate",
Leader = "Leader",
PreCandidate = "PreCandidate",
}
}
impl RaftState {
pub fn is_leader(&self) -> bool {
matches!(self, Self::Leader)
}
}
impl From<RaftStateRole> for RaftState {
fn from(role: RaftStateRole) -> Self {
match role {
RaftStateRole::Follower => Self::Follower,
RaftStateRole::Candidate => Self::Candidate,
RaftStateRole::Leader => Self::Leader,
RaftStateRole::PreCandidate => Self::PreCandidate,
}
}
}
#[derive(Copy, Clone, Debug, tlua::Push, tlua::PushInto)]
/// `raft_id` of the current instance
/// `raft_id` of the leader instance
pub leader_id: Option<RaftId>,
/// Current term number
pub term: RaftTerm,
/// Current raft state
pub raft_state: RaftState,
pub fn check_term(&self, requested_term: RaftTerm) -> traft::Result<()> {
if requested_term != self.term {
return Err(Error::TermMismatch {
requested: requested_term,
current: self.term,
});
}
Ok(())
}
}
type StorageWatchers = HashMap<ClusterwideSpaceIndex, watch::Sender<()>>;
type StorageChanges = HashSet<ClusterwideSpaceIndex>;
/// The heart of `traft` module - the Node.
/// RaftId of the Node.
//
// It appears twice in the Node: here and in `status.id`.
// This is a concious decision.
// `self.raft_id()` is used in Rust API, and
// `self.status()` is mostly useful in Lua API.

Georgy Moshkin
committed
pub(crate) raft_id: RaftId,
pub(crate) storage: Clusterwide,
pub(crate) raft_storage: RaftSpaceAccess,
pub(crate) governor_loop: governor::Loop,
status: watch::Receiver<Status>,
watchers: Rc<Mutex<StorageWatchers>>,
impl std::fmt::Debug for Node {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("Node")
.field("raft_id", &self.raft_id)
.finish_non_exhaustive()
}
/// Initialize the raft node.
/// **This function yields**
pub fn new(storage: Clusterwide, raft_storage: RaftSpaceAccess) -> Result<Self, RaftError> {
let node_impl = NodeImpl::new(storage.clone(), raft_storage.clone())?;
let raft_id = node_impl.raft_id();
let status = node_impl.status.subscribe();
let node_impl = Rc::new(Mutex::new(node_impl));
let watchers = Rc::new(Mutex::new(HashMap::new()));
main_loop: MainLoop::start(node_impl.clone(), watchers.clone()), // yields
governor_loop: governor::Loop::start(

Georgy Moshkin
committed
status.clone(),
storage.clone(),
raft_storage.clone(),
),
storage,
raft_storage,
watchers,
};
// Wait for the node to enter the main loop
node.tick_and_yield(0);
pub fn raft_id(&self) -> RaftId {
pub(crate) fn node_impl(&self) -> MutexGuard<NodeImpl> {
self.node_impl.lock()
}
/// Wait for the status to be changed.
/// **This function yields**
fiber::block_on(self.status.clone().changed()).unwrap();
/// **This function yields**
pub fn wait_for_read_state(&self, timeout: Duration) -> traft::Result<RaftIndex> {
let notify = self.raw_operation(|node_impl| node_impl.read_state_async())?;
fiber::block_on(notify.recv_timeout::<RaftIndex>(timeout))
/// Propose an operation and wait for it's result.
/// **This function yields**
pub fn propose_and_wait<T: OpResult + Into<Op>>(
&self,
op: T,
timeout: Duration,
) -> traft::Result<T::Result> {
let notify = self.raw_operation(|node_impl| node_impl.propose_async(op))?;
fiber::block_on(notify.recv_timeout::<T::Result>(timeout))
/// Become a candidate and wait for a main loop round so that there's a
/// chance we become the leader.
/// **This function yields**
pub fn campaign_and_yield(&self) -> traft::Result<()> {
self.raw_operation(|node_impl| node_impl.campaign())?;
// Even though we don't expect a response, we still should let the
// main_loop do an iteration. Without rescheduling, the Ready state
// wouldn't be processed, the Status wouldn't be updated, and some
// assertions may fail (e.g. in `postjoin()` in `main.rs`).
fiber::reschedule();
Ok(())
/// **This function yields**
pub fn step_and_yield(&self, msg: raft::Message) {
self.raw_operation(|node_impl| node_impl.step(msg))
.map_err(|e| tlog!(Error, "{e}"))
.ok();
// even though we don't expect a response, we still should let the
// main_loop do an iteration
fiber::reschedule();
/// **This function yields**
pub fn tick_and_yield(&self, n_times: u32) {
self.raw_operation(|node_impl| node_impl.tick(n_times));
// even though we don't expect a response, we still should let the
// main_loop do an iteration
fiber::reschedule();
/// **This function yields**
let raft_id = self.raft_id();
self.step_and_yield(raft::Message {
to: raft_id,
from: raft_id,
msg_type: raft::MessageType::MsgTimeoutNow,
..Default::default()
})
/// Processes the [`join::Request`] request and appends necessary
/// entries to the raft log (if successful).
/// Returns the resulting [`Instance`] when the entry is committed.
///
/// Returns an error if the callee node isn't a raft leader.
/// **This function yields**
pub fn handle_join_request_and_wait(
&self,
) -> traft::Result<(Box<Instance>, HashSet<Address>)> {
let (notify_addr, notify_instance, replication_addresses) =
self.raw_operation(|node_impl| node_impl.process_join_request_async(req))?;
fiber::block_on(async {
let (addr, instance) = futures::join!(notify_addr.recv_any(), notify_instance.recv());
addr?;
instance.map(|i| (Box::new(i), replication_addresses))
/// Processes the [`update_instance::Request`] request and appends
/// [`Op::PersistInstance`] entry to the raft log (if successful).
///
/// Returns `Ok(())` when the entry is committed.
///
/// Returns an error if the callee node isn't a raft leader.
///
/// **This function yields**
pub fn handle_update_instance_request_and_wait(
&self,
req: update_instance::Request,
) -> traft::Result<()> {
let notify =
self.raw_operation(|node_impl| node_impl.process_update_instance_request_async(req))?;
fiber::block_on(notify.recv_any())?;
Ok(())
}
/// Only the conf_change_loop on a leader is eligible to call this function.
///
/// **This function yields**

Georgy Moshkin
committed
pub(crate) fn propose_conf_change_and_wait(
&self,
term: RaftTerm,
conf_change: raft::ConfChangeV2,
) -> traft::Result<()> {
let notify =
self.raw_operation(|node_impl| node_impl.propose_conf_change_async(term, conf_change))?;
fiber::block_on(notify).unwrap()?;
Ok(())
/// Attempt to transfer leadership to a given node and yield.
///
/// **This function yields**
pub fn transfer_leadership_and_yield(&self, new_leader_id: RaftId) {
self.raw_operation(|node_impl| node_impl.raw_node.transfer_leader(new_leader_id));
fiber::reschedule();
}
/// This function **may yield** if `self.node_impl` mutex is acquired.
#[inline]
fn raw_operation<R>(&self, f: impl FnOnce(&mut NodeImpl) -> R) -> R {
let mut node_impl = self.node_impl.lock();
res
#[inline]
pub fn all_traft_entries(&self) -> ::tarantool::Result<Vec<traft::Entry>> {
self.raft_storage.all_traft_entries()
}
/// Returns a watch which will be notified when a clusterwide space is
/// modified via the specified `index`.
///
/// You can also pass a [`ClusterwideSpace`] in which case the space's
/// primary index will be used.
#[inline(always)]
pub fn storage_watcher(&self, index: impl Into<ClusterwideSpaceIndex>) -> watch::Receiver<()> {
self.storage_watcher_impl(index.into())
}
/// A non generic version for optimization.
fn storage_watcher_impl(&self, index: ClusterwideSpaceIndex) -> watch::Receiver<()> {
use std::collections::hash_map::Entry;
let mut watchers = self.watchers.lock();
match watchers.entry(index) {
Entry::Vacant(entry) => {
let (tx, rx) = watch::channel(());
entry.insert(tx);
rx
}
Entry::Occupied(entry) => entry.get().subscribe(),
}
}
pub raw_node: RawNode,
pub notifications: HashMap<LogicalClock, Notifier>,
topology_cache: KVCell<RaftTerm, Topology>,
joint_state_latch: KVCell<RaftIndex, oneshot::Sender<Result<(), RaftError>>>,
storage: Clusterwide,
raft_storage: RaftSpaceAccess,
status: watch::Sender<Status>,
fn new(storage: Clusterwide, raft_storage: RaftSpaceAccess) -> Result<Self, RaftError> {
let box_err = |e| StorageError::Other(Box::new(e));
let raft_id: RaftId = raft_storage.raft_id().map_err(box_err)?.unwrap();
let applied: RaftIndex = raft_storage.applied().map_err(box_err)?.unwrap_or(0);
let gen = raft_storage.gen().unwrap().unwrap_or(0) + 1;
raft_storage.persist_gen(gen).unwrap();
LogicalClock::new(raft_id, gen)
};
let pool = ConnectionPool::builder(storage.clone())
.handler_name(stringify_cfunc!(proc_raft_interact))
.call_timeout(MainLoop::TICK.saturating_mul(4))
let cfg = raft::Config {
id: raft_id,
applied,
pre_vote: true,
..Default::default()
};
let raw_node = RawNode::new(&cfg, raft_storage.clone(), &tlog::root())?;
let (status, _) = watch::channel(Status {
id: raft_id,
leader_id: None,
term: traft::INIT_RAFT_TERM,
raft_state: RaftState::Follower,
});
Ok(Self {
raw_node,
notifications: Default::default(),
topology_cache: KVCell::new(),
joint_state_latch: KVCell::new(),
raft_storage,
})
}
fn raft_id(&self) -> RaftId {
self.raw_node.raft.id
}
/// Provides mutable access to the Topology struct which reflects
/// uncommitted state of the cluster. Ensures the node is a leader.
/// In case it's not — returns an error.
///
/// It's important to access topology through this function so that
/// new changes are consistent with uncommitted ones.
fn topology_mut(&mut self) -> Result<&mut Topology, Error> {
if self.raw_node.raft.state != RaftStateRole::Leader {
self.topology_cache.take(); // invalidate the cache
return Err(Error::NotALeader);
}
let current_term = self.raw_node.raft.term;
let topology: Topology = unwrap_some_or! {
self.topology_cache.take_or_drop(¤t_term),
{
let mut instances = vec![];
for instance @ Instance { raft_id, .. } in self.storage.instances.iter()? {
instances.push((instance, self.storage.peer_addresses.try_get(raft_id)?))
let replication_factor = self
.storage

Georgy Moshkin
committed
.properties
.get(PropertyName::ReplicationFactor)?
.ok_or_else(|| Error::other("missing replication_factor value in storage"))?;
Topology::new(instances).with_replication_factor(replication_factor)
}
};
Ok(self.topology_cache.insert(current_term, topology))
}
pub fn read_state_async(&mut self) -> Result<Notify, RaftError> {
// In some states `raft-rs` ignores the ReadIndex request.
// Check it preliminary, don't wait for the timeout.
//
// See for details:
// - <https://github.com/tikv/raft-rs/blob/v0.6.0/src/raft.rs#L2058>
// - <https://github.com/tikv/raft-rs/blob/v0.6.0/src/raft.rs#L2323>
let leader_doesnt_exist = self.raw_node.raft.leader_id == INVALID_ID;
let term_just_started = // ...
self.raw_node.raft.state == RaftStateRole::Leader
&& !self.raw_node.raft.commit_to_current_term();
if leader_doesnt_exist || term_just_started {
return Err(RaftError::ProposalDropped);
}
let (lc, notify) = self.schedule_notification();
// read_index puts this context into an Entry,
// so we've got to compose full EntryContext,
// despite single LogicalClock would be enough
let ctx = traft::EntryContextNormal::new(lc, Op::Nop);
self.raw_node.read_index(ctx.to_bytes());
Ok(notify)
}
/// **Doesn't yield**
#[inline]
pub fn propose_async<T>(&mut self, op: T) -> Result<Notify, RaftError>
where
{
let (lc, notify) = self.schedule_notification();
let ctx = traft::EntryContextNormal::new(lc, op.into());
self.raw_node.propose(ctx.to_bytes(), vec![])?;
Ok(notify)
}
pub fn campaign(&mut self) -> Result<(), RaftError> {
self.raw_node.campaign()
}
pub fn step(&mut self, msg: raft::Message) -> Result<(), RaftError> {
if msg.to != self.raft_id() {
return Ok(());
}
// TODO check it's not a MsgPropose with op::PersistInstance.
// TODO check it's not a MsgPropose with ConfChange.
self.raw_node.step(msg)
}
pub fn tick(&mut self, n_times: u32) {
for _ in 0..n_times {
self.raw_node.tick();
}
}
/// Processes the [`join::Request`] request and appends necessary entries
/// to the raft log (if successful).
///
/// Returns an error if the callee node isn't a Raft leader.
///
/// **This function doesn't yield**
pub fn process_join_request_async(
) -> traft::Result<(Notify, Notify, HashSet<Address>)> {
let topology = self.topology_mut()?;
let (instance, address, replication_addresses) = topology
.join(
req.instance_id,
req.replicaset_id,
req.advertise_address,
req.failure_domain,
)
.map_err(RaftError::ConfChangeError)?;
let peer_address = traft::PeerAddress {
raft_id: instance.raft_id,
address,
let op_addr = Dml::replace(ClusterwideSpace::Address, &peer_address).expect("can't fail");
let op_instance = PersistInstance::new(instance);
// Important! Calling `raw_node.propose()` may result in
// `ProposalDropped` error, but the topology has already been
// modified. The correct handling of this case should be the
// following.
//
// The `topology_cache` should be preserved. It won't be fully
// consistent anymore, but that's bearable. (TODO: examine how
// the particular requests are handled). At least it doesn't
// much differ from the case of overriding the entry due to a
// re-election.
//
// On the other hand, dropping topology_cache may be much more
// harmful. Loss of the uncommitted entries could result in
// assigning the same `raft_id` to a two different nodes.
Ok((
self.propose_async(op_addr)?,
self.propose_async(op_instance)?,
replication_addresses,
/// Processes the [`update_instance::Request`] request and appends [`Op::PersistInstance`]
/// entry to the raft log (if successful).
///
/// Returns an error if the callee node isn't a Raft leader.
///
/// **This function doesn't yield**
pub fn process_update_instance_request_async(
&mut self,
req: update_instance::Request,
) -> traft::Result<Notify> {
let topology = self.topology_mut()?;
let instance = topology
.update_instance(req)
.map_err(RaftError::ConfChangeError)?;
// Important! Calling `raw_node.propose()` may result in
// `ProposalDropped` error, but the topology has already been
// modified. The correct handling of this case should be the
// following.
//
// The `topology_cache` should be preserved. It won't be fully
// consistent anymore, but that's bearable. (TODO: examine how
// the particular requests are handled). At least it doesn't
// much differ from the case of overriding the entry due to a
// re-election.
//
// On the other hand, dropping topology_cache may be much more
// harmful. Loss of the uncommitted entries could result in
// assigning the same `raft_id` to a two different nodes.
//
Ok(self.propose_async(PersistInstance::new(instance))?)
}
fn propose_conf_change_async(
&mut self,
term: RaftTerm,
conf_change: raft::ConfChangeV2,
) -> Result<oneshot::Receiver<Result<(), RaftError>>, RaftError> {
// In some states proposing a ConfChange is impossible.
// Check if there's a reason to reject it.
// Checking leadership is only needed for the
// correct latch management. It doesn't affect
// raft correctness. Checking the instance is a
// leader makes sure the proposed `ConfChange`
// is appended to the raft log immediately
// instead of sending `MsgPropose` over the
// network.
if self.raw_node.raft.state != RaftStateRole::Leader {
return Err(RaftError::ConfChangeError("not a leader".into()));
}
if term != self.raw_node.raft.term {
return Err(RaftError::ConfChangeError("raft term mismatch".into()));
}
// Without this check the node would silently ignore the conf change.
// See https://github.com/tikv/raft-rs/blob/v0.6.0/src/raft.rs#L2014-L2026
if self.raw_node.raft.has_pending_conf() {
return Err(RaftError::ConfChangeError(
"already has pending confchange".into(),
));
}
let prev_index = self.raw_node.raft.raft_log.last_index();
self.raw_node.propose_conf_change(vec![], conf_change)?;
// Ensure the ConfChange was actually appended to the log.
// Otherwise it's a problem: current instance isn't actually a
// leader (which is impossible in theory, but we're not sure in
// practice) and sent the message to the raft network. It may
// lead to an inconsistency.
let last_index = self.raw_node.raft.raft_log.last_index();
assert_eq!(last_index, prev_index + 1);
if !self.joint_state_latch.is_empty() {
warn_or_panic!("joint state latch is locked");
}
let (tx, rx) = oneshot::channel();
self.joint_state_latch.insert(last_index, tx);
event::broadcast(Event::JointStateEnter);
Ok(rx)
}
/// Is called during a transaction
///
/// Returns `true` if wait_lsn is needed in `advance`.
fn handle_committed_entries(
&mut self,
entries: &[raft::Entry],
wake_governor: &mut bool,
expelled: &mut bool,
storage_changes: &mut StorageChanges,
) -> traft::Result<()> {
let mut entries = entries.iter().peekable();
while let Some(&entry) = entries.peek() {
let entry = match traft::Entry::try_from(entry) {
Ok(v) => v,
Err(e) => {
tlog!(Error, "abnormal entry: {e}"; "entry" => ?entry);
continue;
}
};
let mut wait_lsn = false;
start_transaction(|| -> tarantool::Result<()> {
let entry_index = entry.index;
match entry.entry_type {
raft::EntryType::EntryNormal => {
wait_lsn = self.handle_committed_normal_entry(
entry,
wake_governor,
expelled,
storage_changes,
);
if wait_lsn {
return Ok(());
}
}
raft::EntryType::EntryConfChange | raft::EntryType::EntryConfChangeV2 => {
self.handle_committed_conf_change(entry)
}
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
let res = self.raft_storage.persist_applied(entry_index);
if let Err(e) = res {
tlog!(
Error,
"error persisting applied index: {e}";
"index" => entry_index
);
} else {
event::broadcast(Event::RaftEntryApplied);
}
Ok(())
})?;
if wait_lsn {
// TODO: this shouldn't ever happen for a raft leader,
// but what if it does?
// TODO: What if about we get elected leader after wait_lsn?
if let Err(e) = self.wait_lsn() {
let timeout = MainLoop::TICK;
tlog!(
Warning,
"failed syncing with replication master: {e}, retrying in {:?}...",
timeout
);
fiber::sleep(timeout);
}
continue;
// Actually advance the iterator.
let _ = entries.next();
Ok(())
}
/// Is called during a transaction
///
/// Returns `true` if wait_lsn is needed in `advance`.
fn handle_committed_normal_entry(
&mut self,
entry: traft::Entry,
wake_governor: &mut bool,
expelled: &mut bool,
storage_changes: &mut StorageChanges,
) -> bool {
assert_eq!(entry.entry_type, raft::EntryType::EntryNormal);
let lc = entry.lc();
let index = entry.index;
let op = entry.into_op().unwrap_or(Op::Nop);
tlog!(Debug, "applying entry: {op}"; "index" => index);
Op::PersistInstance(PersistInstance(instance)) => {
*wake_governor = true;
storage_changes.insert(ClusterwideSpace::Instance.into());
if has_grades!(instance, Expelled -> *) && instance.raft_id == self.raft_id() {
// cannot exit during a transaction
*expelled = true;
}
}
Op::Dml(op) => {
if matches!(
op.space(),
ClusterwideSpace::Property | ClusterwideSpace::Replicaset
) {
*wake_governor = true;
}
storage_changes.insert(op.index());
let storage_properties = &self.storage.properties;
// apply the operation
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
let mut result = Box::new(()) as Box<dyn AnyWithTypeName>;
match op {
Op::Nop => {}
Op::PersistInstance(op) => {
let instance = op.0;
self.storage.instances.put(&instance).unwrap();
result = instance as _;
}
Op::Dml(op) => {
let res = match op {
Dml::Insert { space, tuple } => space.insert(&tuple).map(Some),
Dml::Replace { space, tuple } => space.replace(&tuple).map(Some),
Dml::Update { space, key, ops } => space.primary_index().update(&key, &ops),
Dml::Delete { space, key } => space.primary_index().delete(&key),
};
result = Box::new(res) as _;
}
Op::DdlPrepare {
ddl,
schema_version,
} => {
self.apply_op_ddl_prepare(ddl, schema_version)
.expect("storage error");
}
Op::DdlCommit => {
let current_version_in_tarantool = pico_schema_version().expect("storage error");
let pending_version = storage_properties
.pending_schema_version()
.expect("storage error")
.expect("granted we don't mess up log compaction, this should not be None");
if current_version_in_tarantool < pending_version {
// TODO: check if replication master in _pico_replicaset
let is_master = !lua_eval::<bool>("return box.info.ro").expect("lua error");
if is_master {
set_pico_schema_version(pending_version).expect("storage error");
// TODO: after this current_version_in_tarantool must be >= pending_version
} else {
// wait_lsn
return true;
}
}
let ddl = storage_properties
.pending_schema_change()
.expect("storage error")
.expect("granted we don't mess up log compaction, this should not be None");
match ddl {
Ddl::CreateSpace { id, .. } => {
self.storage
.spaces
.update_operable(id, true)
.expect("storage error");
self.storage
.indexes
.update_operable(id, 0, true)
.expect("storage error");
}
_ => {
todo!()
}
}
storage_properties
.delete(PropertyName::PendingSchemaChange)
.expect("storage error");
storage_properties
.delete(PropertyName::PendingSchemaVersion)
.expect("storage error");
storage_properties
.put(PropertyName::CurrentSchemaVersion, &pending_version)
.expect("storage error");
}
Op::DdlAbort => {
let current_version_in_tarantool = pico_schema_version().expect("storage error");
let pending_version: u64 = storage_properties
.pending_schema_version()
.expect("storage error")
.expect("granted we don't mess up log compaction, this should not be None");
// This condition means, schema versions must always increase
// even after an DdlAbort
if current_version_in_tarantool == pending_version {
// TODO: check if replication master in _pico_replicaset
let is_master = !lua_eval::<bool>("return box.info.ro").expect("lua error");
if is_master {
let current_version = storage_properties
.current_schema_version()
.expect("storage error");
set_pico_schema_version(current_version).expect("storage error");
// TODO: after this current_version must be == pending_version
} else {
// wait_lsn
return true;
}
}
let ddl = storage_properties
.pending_schema_change()
.expect("storage error")
.expect("granted we don't mess up log compaction, this should not be None");
match ddl {
Ddl::CreateSpace { id, .. } => {
self.storage.indexes.delete(id, 0).expect("storage error");
self.storage.spaces.delete(id).expect("storage error");
}
_ => {
todo!()
}
}
storage_properties
.delete(PropertyName::PendingSchemaChange)
.expect("storage error");
storage_properties
.delete(PropertyName::PendingSchemaVersion)
.expect("storage error");
}
}
if let Some(lc) = &lc {
if let Some(notify) = self.notifications.remove(lc) {
notify.notify_ok_any(result);
}
}
if let Some(notify) = self.joint_state_latch.take_or_keep(&index) {
// It was expected to be a ConfChange entry, but it's
// normal. Raft must have overriden it, or there was
// a re-election.
let e = RaftError::ConfChangeError("rolled back".into());
let _ = notify.send(Err(e));
event::broadcast(Event::JointStateDrop);
}
false
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
fn apply_op_ddl_prepare(&self, ddl: Ddl, schema_version: u64) -> traft::Result<()> {
debug_assert!(unsafe { tarantool::ffi::tarantool::box_txn() });
match ddl.clone() {
Ddl::CreateSpace {
id,
name,
format,
primary_key,
distribution,
} => {
let space_def = SpaceDef {
id,
name,
distribution,
schema_version,
format,
operable: false,
};
self.storage.spaces.insert(&space_def)?;
let index_def = IndexDef {
id: 0,
name: "primary_key".into(),
space_id: id,
schema_version,
parts: primary_key,
operable: false,
// TODO: support other cases
local: true,
};
self.storage.indexes.insert(&index_def)?;
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
Ddl::CreateIndex {
space_id,
index_id,
by_fields,
} => {
let _ = (space_id, index_id, by_fields);
todo!();
}
Ddl::DropSpace { id } => {
let _ = id;
todo!();
}
Ddl::DropIndex { index_id, space_id } => {
let _ = (index_id, space_id);
todo!();
}
}
self.storage
.properties
.put(PropertyName::PendingSchemaChange, &ddl)?;
self.storage
.properties
.put(PropertyName::PendingSchemaVersion, &schema_version)?;
Ok(())
/// Is called during a transaction
fn handle_committed_conf_change(&mut self, entry: traft::Entry) {
let mut latch_unlock = || {
if let Some(notify) = self.joint_state_latch.take() {
let _ = notify.send(Ok(()));
event::broadcast(Event::JointStateLeave);
}
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
};
// Beware: a tiny difference in type names (`V2` or not `V2`)
// makes a significant difference in `entry.data` binary layout and
// in joint state transitions.
// `ConfChangeTransition::Auto` implies that `ConfChangeV2` may be
// applied in an instant without entering the joint state.
let (is_joint, conf_state) = match entry.entry_type {
raft::EntryType::EntryConfChange => {
let mut cc = raft::ConfChange::default();
cc.merge_from_bytes(&entry.data).unwrap();
latch_unlock();
(false, self.raw_node.apply_conf_change(&cc).unwrap())
}
raft::EntryType::EntryConfChangeV2 => {
let mut cc = raft::ConfChangeV2::default();
cc.merge_from_bytes(&entry.data).unwrap();
// Unlock the latch when either of conditions is met:
// - conf_change will leave the joint state;
// - or it will be applied without even entering one.
let leave_joint = cc.leave_joint() || cc.enter_joint().is_none();
if leave_joint {
latch_unlock();
}
// ConfChangeTransition::Auto implies that at this
// moment raft-rs will implicitly propose another empty
// conf change that represents leaving the joint state.
(!leave_joint, self.raw_node.apply_conf_change(&cc).unwrap())
}
_ => unreachable!(),
};